Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

the expanding Polymer Horizon

1960-01-01
600013
THE DEVELOPMENT of new polymers offering properties and new combinations of desirable characteristics, coupled with advances in manufacturing techniques, has expanded the plastics horizon. This paper describes some of these new materials and a few of their many possible applications in the automotive industry. The author emphasizes that greater use of plastics in the automotive field depends to a great degree on the imagination and ability applied in creating new products. Design features most overcome the fundamental limitations of the new materials. The basic weaknesses of plastics are listed. Production techniques will affect the future expansion of the industry. Three methods show particular promise: blow molding, fluidized polymer deposition, and potting compounds.*
Technical Paper

the development of Refractory Sheet Metal Structures

1960-01-01
600041
THIS PAPER REPORTS on the present state of the art in the utilization of refractory metals for air frame and powerplant sheet metal components. By far the most promising of these metals to date is molybdenum. The mechanical and physical properties of molybdenum are well-suited for high-temperature service. The combination of relatively high thermal conductivity, low thermal expansion coefficient, good specific heat, and a reasonably high emissivity of a coated surface make this material suitable for exterior surface application on severely aerodynamically heated components. However, in its usable alloyed forms, molybdenum tends to behave in a brittle manner at room temperature, suffering from a high brittle-to-ductile transition temperature. Other unacceptable properties are the presence of laminations in the material, 45-deg preferred angle cracking, and difficulty of controlling interstitial alloying elements. The authors discuss each of these and the progress made in overcoming them
Technical Paper

the design of Planetary Gear Trains

1959-01-01
590059
THE usefulness of planetary gear trains and the engineering techniques necessary for optimum design are discussed in this paper. A simple method for calculating planetary gear ratios is described which can be used to determine quickly the potential usefulness of any planetary configurations. The author lists criteria which help to evaluate the potential of a planetary gear train schematic from the standpoints of gear noise and structural viewpoint. Detailed design of individual members include spacing of the pinions, mounting considerations, thrust direction, lubrication, and stress evaluation.
Technical Paper

the Machining of Ultra-Strength Alloys

1960-01-01
600005
THE AIR FORCE has set up a program to evaluate the machining characteristics of the more commonly used high-strength thermal-resistant materials. This paper describes the test results to date. Four materials are being tested: SAE 4340 quenched and tempered to 50–55 Rockwell C, SAE designation H11 quenched and tempered to 50–55 Rockwell C, AM-350 solution treated and aged, and A-286 solution treated and aged. Machining tests include: turning milling, drilling, and tapping.*
Technical Paper

some thoughts on optimum combinations of Wings and Vertical Thrust Generators in VTOL Aircraft

1959-01-01
590040
THIS PAPER reviews VTOL problems, indicating probable ways toward optimization of whole lifting and propelling system. Also discussed are the power and thrust requirements for optimum cruise and vertical take-offs and landings for propeller-driven and jet-propelled aircraft. Three speed ranges offer the most promise for VTOL aircraft, if thrust requirements for cruise and take-off are to match. The ranges are centered around Mach numbers of 0.65, 0.8, and 2.0+. There is a possibility of overcoming the high thrust needed for hovering by use of bypass augmentation, special hovering jets, or favorable ground effects, the author reports.
Technical Paper

selection of Optimum Modes of Control for aircraft engines

1959-01-01
590047
THE optimum mode of control for an aircraft engine is dependent on both the configuration of the engine and its application. Each engine application requires several detail modes of control, one for each definable regime of operation of the engine. Discussions of control requirements can be simplified by classifying these regimes by objectives: physical limiting, thrust, and transient control. The turbojet engine is the basis for the discussion in this paper. Acceptable modes of control can often be selected by inspection of the engine and its application. Selection of an “optimum” control mode requires investigation of the operation of the engine and weapons system at every stage of its use. The selection of a “mode” of control requires a compromise between performance and other design factors. The need for simplicity and accuracy must be balanced against the stability requirements. The availability and flexibility of control components may limit the modes of control considered.
Technical Paper

recent developments make ENGINEERING SPECIFICATIONS more realistic

1959-01-01
590046
SPECIFICATIONS that are realistic for production and result in a product that functions properly can be set with a three-step method evolved from statistical control techniques. The tolerances thus established reduce production costs, as well as costs arising from faulty products, the author states. The author applies the method to a leakage problem encountered on mechanical-hydraulic units. Through the use of statistical control techniques, the cause of the leakage was discovered.
Technical Paper

preliminary design considerations for the Structure of a Trisonic Transport

1960-01-01
600045
STRUCTURAL MATERIALS for Mach 3 jet transports pose difficult problems for the design engineer. Reasons for this problem are the incomplete information available on the many possible metals and the diversity of critical properties that are added by supersonic requirements. The material properties discussed in this paper include tensile strength, resistance to crack propagation, ease of fabrication, weldability, and thermal expansion. Cost factors are also considered. The structural configuration of the wing and fuselage is an example of the complexity of the material selection problem. The wing may be rigidity-critical, and the fuselage strength-critical; each requires diferent material properties to solve the problem.*
Technical Paper

prediction in new Metal Joining Processes

1960-01-01
600020
NEW WELDING processes are dropping costs while providing improvements in weld quality. This paper describes some of the more promising new developments in pressure and fusion welding and brazing. Included in the discussion are ultrasonic, high frequency resistance, foil seam, magnetic force, percussion, friction, and thermopressure welding and diffusion bonding. The description of adhesive bonding includes the development of glass or ceramic materials as structural adhesives.*
Technical Paper

euces Software Development

2008-06-29
2008-01-2072
The euces project was initiated to be prepared for the future role of EADS as stage system prime for stage and launcher developments. Launcher stages for NGLV need to meet ambitious mission and operational demands. The paper will present a brief overview of the currently existing COMPONENT libraries and its possibilities as well as an application example which will be a simplified functional model of the ARIANE 5 EPS upper stage w.r.t. physical model formulation of its incorporated components, its schematic, data initialisation and simulation results obtained. The simulation results will be compared to flight data of a dedicated flight.
Technical Paper

economics of Heavy-Duty Brake Design and Maintenance

1960-01-01
600040
THIS PAPER presents a review of the design and operational problems of heavy-duty truck brakes. One of the major development goals is brakes that require no attention between relinings (as are now available on passenger cars). The author discusses point by point the AMA-TTMA Brake Committee agreement relating to extended brake service life and periods between brake adjustments. Emphasis is placed upon maintenance programs which provide for frequent inspection of the vehicle. The margin of brake performance deterioration is narrow.*
Technical Paper

e-Fuel Production via Renewables and the Impact on the In-Use CO2 Performance

2020-09-15
2020-01-2139
The trend towards renewable energy sources will continue under the pre-amble of greenhouse gas (GHG) emission reduction targets. The main question is how to harvest and store renewable energy properly. The challenge of intermittency of the renewable energy resources make the supply less predictable compared to the traditional energy sources. Chemical energy carriers like hydrogen and synthetic fuels (e-Fuels) seem to be at least a part of the solution for storing renewable energy. The usage of e-Fuels in the existing ICE-powered vehicle fleet has a big lever arm to reduce the GHG emissions of the transport sector in the short- and medium term. The paper covers the whole well-to-wheel (WtW) pathway by discussing the e-Fuel production from renewable sources, the storage and the usage in the vehicle. It will be summarized by scenarios on the impact of e-Fuel to the WtW CO2 fleet emissions.
Technical Paper

development of the SUPPRESSOR AND THRUST BRAKE FOR THE DC-8 AIRPLANE

1959-01-01
590061
THIS PAPER presents the development of the DC-8 suppressor and thrust brake unit from initial test work through the final design. The selection of the production unit was based on a wide background of test work using both model and full-scale facilities. On the basis of this work, the configuration selected for production consisted of a fixed, corrugated, suppressing nozzle with a retractable ejector. A target-type thrust brake, mounted in the ejector, was chosen for the thrust brake production unit. Approximately 12-db suppression and 44% reverse thrust are provided by the unit. The ejector is hydraulically operated and the thrust brake air actuated. Both actuation systems obtain power from the aircraft systems which provides for operation during engine-out conditions. Alternate methods of actuation are provided in case of a primary system failure.
Article

Zwick Roell provides flexible materials testing over a wide temperature range

2018-10-19
To enable the tests required for development work to be performed with maximum efficiency, the Zwick Roell Group (ZwickRoell) – a global supplier of materials testing machines based out of Ulm, Germany – developed a materials testing machine that can be equipped with both a temperature chamber and a high-temperature furnace.
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zirconium Oxide Products in Automotive Systems

1997-02-24
970460
This paper will review the role of zirconium oxide in automotive systems. Zirconium oxide has been used and been considered for use in many different applications within automotive systems. Examples include ceramics for engine liners, ionic conductors for oxygen sensors, piezoelectrics for a variety of sensors and as an ingredient of autocatalysts. In the first three examples, ceramics, ionic conductors and piezoelectrics, the known properties of zirconium oxide containing systems have been applied to solve problems in the automobile. In the last the use of zirconia here has created an interest outside automotive applications. This paper will also show how a knowledge of zirconia in one field can produce benefits in another and that through this synergy improved products can be brought to the marketplace
Technical Paper

Zinc-Nickel Alloy Coatings-A Technical Review of Published Literature

1990-02-01
900718
The process considerations, manufacturability, corrosion properties, paintability, weldability, and formability of nominal 9 to 15 percent electrodeposited zinc-nickel (Zn-Ni) alloy-coated sheet steels for automotive applications were reviewed. Zn-Ni coatings were selected for use in automobile body panels by several automakers because of their ease of manufacturing, forming, and welding. Although Zn-Ni coatings may be easily manufactured into autobody panels without a change in production procedures, these coatings exhibit poor paintability and poor corrosion resistance, and would be risky to expose in the U.S. automotive environment at the specified 20 to 40 g/m2 coating weights. Zn-Ni coatings will not provide the cosmetic corrosion protection of zinc or zinc-iron (Zn-Fe) coatings, particularly on exterior autobody panels in a fully painted condition.
Technical Paper

Zinc-Manganese Alloy Electroplated Steel for Automotive Body

1986-02-01
860268
Zinc-manganese alloy electroplated has been developed for automotive body panel applications. The product is manufactured on a conventional electrogalvanizing line using an electrolyte containing zinc sulfate, manganese sulfate and sodium citrate. Electroplated steel with an alloy content of 30-50% manganese exhibits excellent corrosion resistance both as-produced and after painting. Zinc-manganese coatings also show good workability and voidability. Accordingly, this product is suitable for both unexposed parts and the interior surfaces of exposed parts. Finally, zinc-manganese electroplated steel displays good wet adhesion and anti-cratering characteristics so that the product can also be used for exposed applications as automotive body panels.
Technical Paper

Zinc-Magnesium-Aluminium (ZM)-HDG-Coated Steel Sheet for Structural Parts to Outer Panels

2017-03-28
2017-01-0507
Zinc-coatings with a substantial Magnesium content have been in use for over 30 years by now. Unlike the well-established Zn-Al-Mg coatings originating from Japan which have significant higher alloying contents applied mainly for building applications, this Zinc Magnesium Aluminum coating (ZM) is also specifically designed to meet the requirements of car manufacturers. The ZM coating introduced by voestalpine, corrender, is in the upper range of ZM-alloying compositions, which was set by VDA (German Association of the Automotive Industry) and SAE to be within 1.0 to 2.0 wt. % Mg and 1.0 to 3.0 wt. % Al. The properties of these “European” Zinc-Magnesium coatings are well comparable within this range. Compared to GI and GA ZM coatings exhibit significant advantages in the press shops with its excellent formability and reduced galling and powdering respectively which is a significant advantage for the forming of outer panels.
X